Artículos

2/02/12

Termodinámica

La termodinámica (del griego θερμo-, termo, que significa «calor»1 y δύναμις, dínamis, que significa «fuerza») es la rama de la física que describe los estados de equilibrio a nivel macroscópico.

Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.

Los estados de equilibrio son estudiados y definidos por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema, o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden ser tratadas por medio de la termodinámica.

Es importante recalcar que la termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio, definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas».

Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica todas las leyes y variables termodinámicas, se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden ser descritas consistentemente empleando la teoría termodinámica.

Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. 

Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc), el sistema tenderá a evolucionar de un estado de equilibrio a otro; comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. 

Para tener un mayor manejo se especifica que calor significa «energía en tránsito» y dinámica se refiere al «movimiento», por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. 

Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.

Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. 

La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico.

El punto de partida para la mayor parte de las consideraciones termodinámicas son los principios de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que sólo puede hacerse de una determinada manera. 

También se introduce una magnitud llamada entropía, que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro.

Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información.

En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. 

Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. 

Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. 

Esto se puede aplicar a una amplia variedad de temas de ciencia e ingeniería, tales como motores, transiciones de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros. 

Los resultados de la termodinámica son esenciales para la química, la física, la ingeniería química, etc, por nombrar algunos.

Leyes de la termodinámica

Principio cero de la termodinámica

Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado. 

Tiene tremenda importancia experimental «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.

El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. 

El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez esta dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. 

A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.

Este principio fundamental, aún siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. 

De ahí que recibiese el nombre de principio cero.

Primera ley de la termodinámica

También conocida como principio de conservación de la energía para la termodinámica «en realidad el primer principio dice más que una ley de conservación», establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. 

Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. 

Fué propuesta por Nicolas Léonard Sadi Carnot en 1.824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. 

Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Loreto Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.

La ecuación general de la conservación de la energía es la siguiente :


Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma :


Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.

Esta última expresión es igual de frecuente encontrarla en la forma ∆U = Q + W. 

Ambas expresiones, aparentemente contradictorias, son correctas y su diferencia está en que se aplique el convenio de signos IUPAC o el Tradicional.


ilustración de la segunda ley mediante una máquina térmica

Segunda ley de la termodinámica

Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). 

También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. 

De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el primer principio. 

Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.

Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.

La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. 

La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius


En palabras de Sears es: «No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada».

Enunciado de Kelvin

No existe ningún dispositivo que, operando por ciclos, absorba calor de una única fuente (E.absorbida), y lo convierta íntegramente en trabajo (E.útil).

Enunciado de Kelvin—Planck

Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, y la realización de una cantidad igual de trabajo.

Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. 

Debido a esto podemos concluir, que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo, siempre será menor a la unidad, y ésta estará más próxima a la unidad, cuanto mayor sea el rendimiento energético de la misma. 

Es decir, cuanto mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

Tercera ley de la termodinámica

La tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. 

Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. 

La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. 

No es una noción exigida por la termodinámica clásica, así que es probablemente inapropiado tratarlo de «ley».

Es importante recordar que los principios o leyes de la termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. 

El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la termodinámica.

Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por las ciencias.

Termometría

La termometría se encarga de la medición de la temperatura de cuerpos o sistemas. 

Para este fin, se utiliza el termómetro, que es un instrumento que se basa en el cambio de alguna propiedad de la materia debido al efecto del calor; así se tiene el termómetro de mercurio y de alcohol, que se basan en la dilatación, los termopares que deben su funcionamiento al cambio de la conductividad eléctrica, los ópticos que detectan la variación de la intensidad del rayo emitido cuando se refleja en un cuerpo caliente.

Para poder construir el termómetro se utiliza el principio cero de la termodinámica, que dice: «Si un sistema A que está en equilibrio térmico con un sistema B, está en equilibrio térmico también con un sistema C, entonces los tres sistemas A, B y C están en equilibrio térmico entre sí».

Para dos sistemas en equilibrio termodinámico representados por sus respectivas coordenadas termodinámicas (x1, y1) y (x2, y2) tenemos que dichas coordenadas no son función del tiempo, por lo tanto es posible hallar una función que relacionen dichas coordenadas, es decir : 


Propiedades termométricas

Una propiedad termométrica de una sustancia es aquella que varía en el mismo sentido que la temperatura, es decir, si la temperatura aumenta su valor, la propiedad también lo hará, y viceversa.

Escalas de temperatura

Escalas termométricas

Lo que se necesita para construir un termómetro son puntos fijos, es decir, procesos en los cuales la temperatura permanece constante. 

Ejemplos de procesos de este tipo son el proceso de ebullición y el proceso de fusión.

Los puntos generalmente utilizados son el proceso de ebullición y de solidificación de alguna sustancia, durante los cuales la temperatura permanece constante.

Existen varias escalas para medir temperaturas, las más importantes son la escala Celsius, la escala Kelvin y la escala Fahrenheit.

Sistema y ambiente

En el estudio de la termodinámica la atención está dirigida al interior de un sistema, aunque se adopte un punto de vista macroscópico, sólo se consideran aquellas magnitudes de este tipo que tienen relación con el estado interno del sistema. 

Para poder entender las magnitudes involucradas en este tema, se hace necesario definir los conceptos de sistema y estado de un sistema.

Sistema

Se puede definir un sistema como un conjunto de materia, que está limitado por una superficie, que le pone el observador, real o imaginaria. 

Si en el sistema no entra ni sale materia, se dice que se trata de un sistema cerrado, o sistema aislado si no hay intercambio de materia y energía, dependiendo del caso. 

En la naturaleza, encontrar un sistema estrictamente aislado es, por lo que sabemos, imposible, pero podemos hacer aproximaciones. 

Un sistema del que sale y/o entra materia, recibe el nombre de abierto. Ponemos unos ejemplos:

Un sistema abierto : es cuando existe un intercambio de masa y de energía con los alrededores; es por ejemplo, un coche. 

Le echamos combustible y él desprende diferentes gases y calor.

Un sistema cerrado : es cuando no existe un intercambio de masa con el medio circundante, sólo se puede dar un intercambio de energía; un reloj de cuerda, no introducimos ni sacamos materia de él. Solo precisa un aporte de energía que emplea para medir el tiempo.

Un sistema aislado : es cuando no existe el intercambio ni de masa y energía con los alrededores; 

Cómo encontrarlo si no podemos interactuar con él? 

Sin embargo un termo lleno de comida caliente es una aproximación, ya que el envase no permite el intercambio de materia e intenta impedir que la energía (calor) salga de él. 

El universo es un sistema aislado, ya que la variación de energía es cero ΔE = 0.

Medio externo

Se llama medio externo o ambiente a todo aquello que no está en el sistema pero que puede influir en él. 

Por ejemplo, consideremos una taza con agua, que está siendo calentada por un mechero. 

Consideremos un sistema formado por la taza y el agua, entonces el medio está formado por el mechero, el aire, etc.

Equilibrio térmico

Toda sustancia por encima de los 0 kelvin (-273,15 °C) emite calor. 

Si dos sustancias en contacto se encuentran a diferente temperatura, una de ellas emitirá más calor y calentará a la más fría. 

El equilibrio térmico se alcanza cuando ambas emiten, y reciben la misma cantidad de calor, lo que iguala su temperatura.

Nota: estrictamente sería la misma cantidad de calor por gramo, ya que una mayor cantidad de sustancia emite más calor a la misma temperatura.

Variables termodinámicas

Las variables que tienen relación con el estado interno de un sistema, se llaman variables termodinámicas o coordenadas termodinámicas, y entre ellas las más importantes en el estudio de la termodinámica son : la masa, el volumen, la densidad, la presión, la temperatura.

En termodinámica es muy importante estudiar sus propiedades, las cuáles podemos dividirlas en dos :

Propiedades intensivas : son aquellas que no dependen de la cantidad de sustancia o del tamaño de un sistema, por lo que cuyo valor permanece inalterable al subdividir el sistema inicial en varios subsistemas, por este motivo no son propiedades aditivas.

Propiedades extensivas : son las que dependen de la cantidad de sustancias del sistema, y son recíprocamente equivalentes a las intensivas. 

Una propiedad extensiva depende por tanto del «tamaño» del sistema. 

Una propiedad extensiva tiene la propiedad de ser aditiva en el sentido de que si se divide el sistema en dos o más partes, el valor de la magnitud extensiva para el sistema completo es la suma de los valores de dicha magnitud para cada una de las partes.

Algunos ejemplos de propiedades extensivas son la masa, el volumen, el peso, cantidad de sustancia, energía, entropía, entalpía, etc. 

En general el cociente entre dos magnitudes extensivas nos da una magnitud intensiva, por ejemplo la división entre masa y volumen nos da la densidad.

Estado de un sistema

Un sistema que puede describirse en función de coordenadas termodinámicas se llama sistema termodinámico y la situación en la que se encuentra definido por dichas coordenadas se llama estado del sistema.

Equilibrio térmico

Un estado en el cual dos coordenadas termodinámicas independientes X e Y permanecen constantes mientras no se modifican las condiciones externas se dice que se encuentra en equilibrio térmico. 

Si dos sistemas se encuentran en equilibrio térmico se dice que tienen la misma temperatura. 

Entonces se puede definir la temperatura como una propiedad que permite determinar si un sistema se encuentra o no en equilibrio térmico con otro sistema.

El equilibrio térmico se presenta cuando dos cuerpos con temperaturas diferentes se ponen en contacto, y el que tiene mayor temperatura cede energía térmica en forma de calor al que tiene más baja, hasta que ambos alcanzan la misma temperatura.

Algunas definiciones útiles en termodinámica son las siguientes.

Foco térmico

Un foco térmico es un sistema que puede entregar y/o recibir calor, pero sin cambiar su temperatura.

Contacto térmico

Se dice que dos sistema están en contacto térmico cuando puede haber transferencia de calor de un sistema a otro.

Procesos termodinámicos

Se dice que un sistema pasa por un proceso termodinámico, o transformación termodinámica, cuando al menos una de las coordenadas termodinámicas no cambia. 

Los procesos más importantes son :

Procesos isotérmicos : son procesos en los que la temperatura no cambia.
Procesos isobáricos : son procesos en los cuales la presión no varía.
Procesos isócoros : son procesos en los que el volumen permanece constante.
Procesos adiabáticos: son procesos en los que no hay transferencia de calor alguna.
Procesos diatermicos : son procesos que dejan pasar el calor fácilmente.

Por ejemplo, dentro de un termo donde se colocan agua caliente y cubos de hielo, ocurre un proceso adiabático, ya que el agua caliente se empezará a enfriar debido al hielo, y al mismo tiempo el hielo se empezará a derretir hasta que ambos estén en equilibrio térmico, sin embargo no hubo transferencia de calor del exterior del termo al interior por lo que se trata de un proceso adiabático.


Energía de Gibbs

En termodinámica, la energía de Gibbs o entalpía libre es un potencial termodinámico, es decir, una función de estado extensiva con unidades de energía, que dá la condición de equilibrio y de espontaneidad para una reacción química (a presión y temperatura constantes).

La segunda ley de la termodinámica postula que una reacción química espontánea hace que la entropía del universo aumente, ΔSuniverso > 0, así mismo ΔSuniverso está en función de ΔSsistema y ΔSalrededores. 

Por lo general sólo importa lo que ocurre en el sistema en estudio y; por otro lado el cálculo de ΔS alrededores puede ser complicado.

Por esta razón fué necesario otra función termodinámica, la energía de Gibbs, que sirva para calcular si una reacción ocurre de forma espontánea tomando en cuenta sólo las variables del sistema.

Anteriormente se la denominaba energía libre de Gibbs, pero por recomendación de la IUPAC se eliminó el segundo término del nombre. 

Cálculo de la energía de Gibbs

Los cambios en la energía

Contenido de calor; T es la temperatura y S es la entropía del sistema. 

Fué desarrollada en los años 1.870 por el físico-matemático estadounidense Williard Gibbs.






No hay comentarios.:

Publicar un comentario

Sus comentarios son valiosos e importantes porque nos hacen crecer y prestarle un mejor servicio, agradecemos sus aportes.